Genetics and Inherited Arrhythmia Syndromes
(The Good, The Bad and The Ugly)

Melanie Care, MSc, CCGC
Genetic Counsellor
Inherited Arrhythmia Clinic, Toronto General Hospital
• No COI to disclose
Objectives

• To review basic inheritance in hereditary arrhythmias
• To discuss interpretation of genetic test results
• To demonstrate utility and limitations of genetic testing
Inherited Arrhythmias

Autosomal dominant
Reduced Penetrance
Variable Expression

A = disease-causing variant
a = normal copy
Genetic Testing

- Rapid, high-throughput DNA analysis
- Simultaneous testing of large numbers of genes
• 21 yo with recurrent syncope
• Resting ECG shows borderline QT
• Exercise test shows abnormal QT dynamics s/o LQTS
• Confirmation of diagnosis
• Management recommendations
• Accurate family risk assessment
• Cascade screening

KCNQ1, p. Gln356X

LONG QT SYNDROME
The Bad...

- 18 yo sudden death, autopsy consistent with ARVC
- Parents, siblings referred for clinical evaluations
- 20 yo brother has features s/o ARVC
Genetic testing - negative

No mutations/variants detected

OR

Gene variants detected known not to cause disease
• Clinical diagnosis not excluded

 – If clinical suspicion is high, negative results must be interpreted with caution

• Hereditary condition not ruled out

• At-risk family members require comprehensive evaluation and f/u
49 y.o. man presents at local ER with fever
ECG shows Brugada pattern
Additional investigations equivocal
Not all gene variants cause disease

Summary

Variant of Uncertain Significance identified in SCN10A.
Variants of Uncertain Significance

- Diagnosis not confirmed/eliminated
- Genetic cause not confirmed/eliminated
- Genetic testing not useful for unaffected family members
Does this gene cause disease?

- How was the gene discovered?
- Is there good evidence to support gene-disease association
Brugada syndrome - Genetic testing panels

The presence of a gene on a genetic testing panel does not equal association with disease
Brugada syndrome

SCN5A
CACNA1C
KCNJ8
SCN10A
HCN4
ABCC9
CACNB2
PKP2
KCNH2
KCND3
KCNJ8
KCND3
GDP1L

V2
© My EKG
Does this variant cause disease?

Rare gene variants are present in the general population!

The Achilles’ Heel of Cardiovascular Genetic Testing: Distinguishing Pathogenic Mutations From Background Genetic Noise

AP Landstrom¹ and MJ Ackerman²

RYR2 rare variants identified in 9% of individuals referred for whole exome sequencing (all indications)
Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD²,¹⁶, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD⁶,⁷,⁸, Wayne W. Grody, MD, PhD⁹,¹⁰,¹¹, Madhuri Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee

Table: Criteria for Determining Benign vs. Pathogenic Variants

<table>
<thead>
<tr>
<th>Population Data</th>
<th>Supporting</th>
<th>Moderate</th>
<th>Strong</th>
<th>Very Strong</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAF is too high for disorder</td>
<td>In general, no effect on gene product</td>
<td>Absent in population databases</td>
<td>Prevalence in affecteds statistically increased over controls</td>
<td></td>
</tr>
<tr>
<td>Other factors consistent with disease penetrance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computational And Predictive Data</th>
<th>Supporting</th>
<th>Moderate</th>
<th>Strong</th>
<th>Very Strong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple lines of computational evidence suggest no impact on gene product</td>
<td>Multiple lines of computational evidence support a deleterious effect on gene product</td>
<td>Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PMS</td>
<td>Same amino acid change as an established pathogenic variant</td>
<td>Predicted null variant in a gene where LOF is a known mechanism of disease</td>
</tr>
<tr>
<td>Mis-sense in gene where only-translating cause disease BP</td>
<td>Mis-sense in gene with low rate of benign mis-sense variants and path. mis-sense common</td>
<td>Mutation hot spot or well-studied functional domain in the absence of benign variation</td>
<td>Well-established functional studies show a deleterious effect</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Functional Data</th>
<th>Supporting</th>
<th>Moderate</th>
<th>Strong</th>
<th>Very Strong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well-established, functional studies show no deleterious effect</td>
<td>Mis-sense in gene with low rate of benign mis-sense variants and path. mis-sense common</td>
<td>Mutation hot spot or well-studied functional domain in the absence of benign variation</td>
<td>Well-established functional studies show a deleterious effect</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Segregation Data</th>
<th>Supporting</th>
<th>Moderate</th>
<th>Strong</th>
<th>Very Strong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-segregation with disease BP</td>
<td>Co-segregation with disease in multiple affected family members</td>
<td>Increased segregation data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>De novo Data</th>
<th>Supporting</th>
<th>Moderate</th>
<th>Strong</th>
<th>Very Strong</th>
</tr>
</thead>
<tbody>
<tr>
<td>De novo (without paternity & maternity confirmed)</td>
<td>De novo (paternity & maternity confirmed)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allele Data</th>
<th>Supporting</th>
<th>Moderate</th>
<th>Strong</th>
<th>Very Strong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed in trans with dominant variant BP</td>
<td>For recessive disorders, detected in trans with a pathogenic variant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed in cis with a pathogenic variant BP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Database</th>
<th>Supporting</th>
<th>Moderate</th>
<th>Strong</th>
<th>Very Strong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reputable source w/out shared data = benign BP</td>
<td>Reputable source = pathogenic BP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Data</th>
<th>Supporting</th>
<th>Moderate</th>
<th>Strong</th>
<th>Very Strong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Found in case of an alternate cause BP</td>
<td>Patient's phenotype or PP highly specific for gene BP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Genetic results must be interpreted in the context of clinical presentation

Does this result make sense?

Phenotype is King!!
Why It Matters

Medical Advice Given:

• Genetic testing for mother
• IF result positive, genetics on other children and f/u for those who test positive
• IF result negative, other children not at risk and no further f/u or testing required
Why It Matters

- Mother – negative for ACTN2, positive for KCNH2
- Half-siblings AT RISK, clinical evaluations and genetic testing recommended
Conclusion

• Genetic testing can be a useful and powerful tool in confirming diagnoses, managing risk in affected patients, identifying at-risk family members

• Genetic testing is one piece of the puzzle

• Genetic testing should be undertaken in the context of expert, clinical evaluation and appropriate genetic counselling
Thank you!

melanie.care@uhn.ca