Genetic Testing in Inherited Heart Diseases

Jodie Ingles, PhD, MPH, FCSANZa,b,c,*, Ivan Macciocca, MHSc, FHGSAd, Ana Morales, MS, CGCe, Kate Thomson, PhD, FRCPf,g

aAgnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
bFaculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
cDepartment of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
dVictorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Vic, Australia
eDivision of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
fOxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, England
gRadcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, England

Received 5 September 2019; received in revised form 2 October 2019; accepted 13 October 2019; online published-ahead-of-print 29 November 2019

Inherited heart diseases include numerous conditions, from the more prevalent hypertrophic cardiomyopathy (HCM) and familial hypercholesterolaemia (FH), to the comparatively less common inherited arrhythmia syndromes, such as long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia (CPVT) and Brugada syndrome (BrS). Genetic testing has evolved rapidly over the last decade and is now considered a mainstream component of clinical management of inherited heart diseases. Cardiac manifestations can also be part of wider syndromes, and genetic testing can play a critical role in clarifying the underlying aetiological basis of disease in some cases. The greatest utility of a genetic diagnosis, however, comes from the ability to elucidate disease risk amongst asymptomatic at-risk family members. Given the nuances and challenges, cardiac genetic testing is best performed in a multidisciplinary specialised clinic with access to cardiac genetic counselling.

Keywords
Inherited heart diseases • Genetic testing • Genetic counselling

Genetic Testing in the Cardiology Clinic

Genetic testing for inherited heart diseases has considerable utility in the cardiology clinic. It is generally a two-step process, with genetic counselling integral at each step (Figure 1). Firstly, sequencing of causal genes is performed in a DNA sample from a clinically affected individual (the proband). Second, if a causative variant is identified, genetic testing for this variant (or variants) can be offered to asymptomatic at-risk relatives (cascade genetic testing). Determining the presence or absence of the variant can be a powerful tool for family management in asymptomatic or unaffected relatives. There are, however, challenges at each step, and the general consensus is that the best outcomes for the patient and their family are achieved when genetic testing is offered in a specialised multidisciplinary clinic with access to genetic counselling. Here, we describe the value and challenges of genetic testing in the cardiology clinic. Further, we provide a glossary of commonly used genetic testing vocabulary (Table 1).

Family History

Despite its value, the family history is often overlooked in clinical practice. Through this process, additional affected individuals as well as at-risk family members can be identified, both essential for genetic counselling. Inherited heart diseases are most often autosomal dominant (AD) traits, although autosomal recessive (AR), X-linked and maternal mitochondrial conditions are also described. With documentation of affected (or suspected affected) relatives, a pattern of inheritance may be inferred and preliminary screening recommendations that could be further adjusted...
Cardiac Genetic Testing for Inherited Heart Diseases

Here we describe the specifics of genetic testing in each disease setting. Table 2 illustrates the minimum gene set that should be sequenced by disease.

Hypertrophic Cardiomyopathy (HCM)

Hypertrophic cardiomyopathy is a disease most often caused by variants in genes that encode the cardiac sarcomere [3]. Genetic testing should include a minimum of eight sarcomere genes (MYH7, MYBPC3, TNNT2, TNNI3, TPM1, ACTC1, MYL2, MYL3). Analysis of genes which cause rare syndromic diseases that can present with isolated left ventricular hypertrophy mimicking HCM, is also considered to have clinical utility; these include GLA (Fabry disease), PRKAG2 (PRKAG2-glycogen storage disease), LAMP2 (Danon disease), amongst others shown in Table 2 [4]. The diagnostic yield when testing the index case (proband) with a definite clinical diagnosis of HCM is approximately 30–40%, with truncating variants in MYBPC3 and missense variants in MYH7 accounting for the vast majority of cases. The highest yield of genetic testing will be amongst those with a demonstrated positive family history, severe left ventricular hypertrophy or young age at diagnosis, without concurrent hypertension [5].

Dilated Cardiomyopathy (DCM)

Dilated cardiomyopathy is a clinically heterogeneous condition and can present either as an isolated phenotype, or as part of a syndrome. Non-syndromic, isolated DCM may be caused by genetic and non-genetic factors, the latter including infectious aetiologies and cardiotoxic drug exposure. Over 100 genes are implicated, encoding proteins which perform a range of structural and functional roles within the cardiac myocyte (e.g., sarcomere, nuclear membrane, desmosome, sarcoplasmic reticulum, cytoskeleton) [6]. Amongst individuals with non-syndromic DCM, the diagnostic yield for a causative variant is approximately 20–30%, and a relatively small number of genes account for the majority of cases (Table 2) [6,7]. In recent years, truncating variants in the A-band (and possibly, other specific regions) of the TTN gene have been shown to account for disease in approximately 25% of probands [8]. TTN encodes the sarcomere protein titin, and, due to the high degree of truncating variants in normal populations, ascertaining causative from benign variants can be problematic [8,9]. Variants in the LMNA gene are detected in around 4–6% of probands, causing a distinct phenotype characterised by progressive conduction system disease, arrhythmia and systolic impairment [10]. As such, pathogenic LMNA variants are detected more frequently in individuals with DCM and conduction disease [11]. Given many DCM cases can have overlap with ARVC genes, the below section should also be considered in this group.

Arrhythmogenic Cardiomyopathies, Including ARVC

Given the phenotypic heterogeneity amongst ARVC families, with many showing preponderance to biventricular or predominantly left-sided disease, there has been a move to consider the broader group as arrhythmogenic cardiomyopathies [12]. Here, we discuss ARVC and the gene specific sub-types of cardiomyopathies.

ARVC is caused by pathogenic variants in genes encoding protein components of the cardiac desmosome. A causative variant is detected in up to 50% of individuals referred for genetic testing who meet 2010 taskforce criteria [13]. Truncating variants in PKP2 are the most common cause of ARVC, accounting for 20–30% of cases. Variants in four other desmosomal genes (DSC2, DSP2, DSP, JUP) account for a smaller proportion of cases (Table 2); the majority of pathogenic variants in these genes are truncating variants [14]. It is well described that the desmosomal genes have a high rate of “noise”, meaning rare missense variants occur frequently in unaffected control populations, therefore
interpretation of missense variants should be cautiously approached [15]. Variants in non-desmosomal genes have also been implicated though with less evidence, for example CDH2.

Other gene specific sub-types that may be considered under the broad term of arrhythmogenic cardiomyopathies include those due to variants in TMEM43, LMNA, FLNC, TTN, DES, RBM20 and PLN. This list is likely to expand as further genetic sub-types are elucidated.

Left Ventricular Non-Compaction (LVNC)

LVNC, characterised by a non-compact ed left ventricular wall with trabeculations, has gained recognition in clinical practice with increased use of cardiac magnetic resonance imaging. There is no consensus as to whether LVNC should be classified as a cardiomyopathy, as individuals with LVNC usually have associated findings, including systolic dysfunction, left ventricular enlargement, or congenital heart defects. The genetics of LVNC are poorly understood. Studies have reported variants mostly in genes associated with other cardiogenetic phenotypes in 29–41% of cases, although neither the phenotype definition or pathogenicity of the variants identified is clear [16]. In a paediatric cohort, the yield of genetic testing for LVNC was reported to be 9%, however, no variants were identified in cases with isolated LVNC. On the other hand, cases involving LVNC and other cardiomyopathy findings had a 12% yield, supporting the idea that isolated LVNC may be a phenotype, not a disease [17,18]. In light of this, we suggest that comprehensive cardiomyopathy or congenital heart disease genetic testing panels may be most informative when LVNC is not isolated or when the family history is consistent with cardiomyopathy or congenital heart defect.

Restrictive Cardiomyopathy (RCM)

Restrictive cardiomyopathy is clinically heterogeneous, with multiple aetiologies known, including infiltrative, storage disease, non-infiltrative, and endomyocardial, many of which are associated with specific genes [19]. Variants in HCM and DCM genes have been reported in non-infiltrative RCM. In these rare cases, family members may have RCM,
HCM or HCM with a restrictive pattern [20]. Genetic testing for RCM should therefore include HCM and DCM genes.

Long QT Syndrome (LQTS)

LQTS is caused by variants in genes which encode cardiac ion channel proteins. While many genes have been implicated in the past decade, only a small number of genes show robust gene–disease association. Causative variants in three genes, KCNQ1, KCNH2 and SCN5A, are detected in approximately 60–70% of individuals with a clinical diagnosis of long QT syndrome [21]. Variants in other genes implicated in LQTS (KCNE1, KCNE2, CACNA1C, CALM1, CALM2, CALM3, CAV3) appear to be rare, accounting for less than 1% of cases. Rare multi-system syndromic disorders with prolonged QTc include Timothy syndrome (CACNA1C), Andersen-Tawil syndrome (KCNJ2), and recessive disorders Jervell and Lange-Nielson syndrome (KCNQ1 and KCNJ1) and Triadin knockout syndrome (TRDN).

Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT)

Causative variants in the RYR2 gene, which encodes ryanodine receptor-2, a cardiac calcium ion channel protein, account for 50–60% of individuals with a clinical diagnosis of CPVT [11]. Most causative variants are missense, with nonsense and splice variants having insufficient evidence at present. Approximately 1–2% of cases have autosomal recessive CPVT caused by pathogenic variants in the CASQ2 gene [22]. Genetic testing has a very favourable yield in those with a clear diagnosis. In rare cases, variants in other genes can be identified which have phenotypic overlap which suggests a misdiagnosis, for example KCNJ2, CALM1, CALM2, CALM3 and TRDN.

Brugada Syndrome (BrS)

Causative variants in SCN5A account for 15–30% of individuals with a clinical diagnosis of BrS [23]. While a number of genes have been implicated in BrS at present there is limited evidence to support disease causality [24]. The genetic basis of BrS is poorly understood and there is growing evidence that many cases are polygenic [25], with familial inheritance rarely reported. Genetic testing in the clinical setting should be carefully considered and confined to SCN5A. Patients with a positive family history of disease, a spontaneous type 1 ECG pattern and symptomatic presentations may have a greater genetic yield though this is an area requiring further research.

Familial Hypercholesterolaemia (FH)

Causative variants in three key genes are detected in 60–80% of probands with a definite clinical diagnosis of FH [26]. The majority of cases have a variant in the LDLR gene, which encodes the low density lipoprotein receptor. Variants in the APOB gene, which encodes apolipoprotein B, and PCSK9, encoding proprotein convertase subtilisin/kexin 9 are detected in a smaller proportion of cases. In cases with a possible clinical diagnosis, the diagnostic yield is lower (25–30%) [27]. The ABCG5, ABCG8 and LIPA genes may also be included in FH test panels; with variants in these genes causing rare autosomal recessive lipid conditions with phenotypic overlap with FH [27]. There is clear benefit of identifying individuals with FH and genetics in this setting is a powerful tool for identifying cases and at-risk relatives.
Heritable Thoracic Aortic Aneurysm/Dissection (HTAAD)

Causal variants in genes encoding protein components of smooth muscle cells (ACTA2, MYL11, MYLK), the transforming growth factor beta (TGFB) signalling pathway (SMAD3, TGFB2, TGFBR1, TGFBR2), and the extracellular matrix (FBN1, COL3A1), are detected in approximately 20% of individuals presenting with HTAAD [28]. Variants in ACTA2, MYL11, MYLK cause non-syndromic HTAAD, whereas variants in other definitive HTAAD genes cause rare syndromic disorders which can present with isolated aortopathy: Loeys-Dietz syndrome (SMAD3, TGFB2, TGFBR1, TGFBR2), Marfan syndrome (FBN1); vascular Ehlers-Danlos syndromes (COL3A1). Genetic testing is useful in distinguishing non-syndromic versus syndromic aortopathy.

The Practical Steps

Who Should Get Genetic Testing?

Overwhelmingly, comprehensive phenotyping to identify a patient who clearly meets diagnostic criteria for disease will give the greatest yield from cardiac genetic testing. Factors such as no alternative clinical explanation for the phenotype, young age at onset, severe disease and positive family history of disease may signal a greater chance that the underlying basis of disease is genetic, i.e., high pre-test probability. If cardiac genetic testing is performed on individuals with an unclear or borderline diagnosis, interpretation of the genetic variants will be very difficult. Cardiac genetic testing should be avoided in those where the pre-test probability is low, due to the risk of miscategorizing a variant as causative which may have important harms [29].

Interpretation of the Results

Rare variants occur in those with and without disease; ascertaining which variants are disease-causing and which are benign is a challenge. Classifying a variant is akin to detective work, whereby evidence is collected and a case is built (Figure 2). Where there is sufficient evidence for causation, a variant will be classified as likely pathogenic or pathogenic. Where the evidence supports the variant not being disease causing, then it will be classified as likely benign or benign. If there is insufficient or contradictory evidence regarding causality, then it will be classified as a variant of uncertain significance (VUS). In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Medical Pathologists (AMP) released a joint statement on the interpretation of sequence variants [30], and these have been widely adopted. Recent gene-specific modifications have been published, including MYH7 variants in cardiomyopathies [31]. Data from public repositories of curated variant information, such as ClinVar [32], can aid variant interpretation; however, it is important to assess the evidence on which previous classifications were based.

In addition to considering the evidence for a variant, whether or not the gene is robustly associated with a given phenotype is of even greater importance. Gene–disease

Figure 2 Weighing up the evidence for pathogenicity.
Abbreviation: gnomAD, Genome Aggregation Database.
associations are now considered routinely when curating genes, and this process involves assessing the clinical and experimental evidence linking the gene and the phenotype, with recent ClinGen gene curation working groups now published [5,24,28]. Where a gene does not have reasonable evidence for disease association, variants in this gene should not be classified as causative nor be used in a clinical setting.

Cardiac Genetic Counselling
Around the world, cardiac genetic counselling is often performed by a counsellor or genetic nurse, and focuses on providing information and emotional support relating to the cardiac genetic disease in their family. Some of the roles include taking a family history, explanation of inheritance risks, assistance with communication to relatives and organising clinical screening, pre and post-test genetic counselling to ensure good understanding and adjustment to genetic results, and psychosocial support where needed.

A Brief Note on Complex Genetic Diseases and Polygenic Risk Scores
Polygenic diseases are caused by numerous genetic and non-genetic factors, with coronary artery disease being a well-described example. By performing genome-wide association studies (GWAS), thousands of single nucleotide variants which each provide a small incremental increased risk of disease can be identified [33]. A polygenic risk score (PRS) is the predicted additive effect of these variants which can be used to predict the risk of developing disease. While not currently in clinical practice, the study reported by Khera and colleagues illustrated the potential for PRS to provide important prognostic value in the management of patients with coronary artery disease [34]. By combining millions of common variants, a PRS was calculated showing better prediction of coronary artery disease than any single traditional risk factor. While promising, these findings are yet to be associated with clear clinical interventions, and to date have the greatest predictive power in European individuals. In the future, used in tandem with clinical investigations and information, PRS may enhance our ability to predict those at greater risk of complex diseases or adverse outcomes, even further necessitating access to specifically trained genetic counsellors.

Summary
Cardiac genetic testing is an extremely useful addition to clinical management of patients with inherited heart diseases. For the most part, the value lies in cascade genetic testing of at-risk relatives, however there is a growing role in clarifying the diagnosis and potentially for management and prognosis in future. Given the nuances, cardiac genetic testing should be performed in centres with experience, including those with access to genetic counselling.

Acknowledgements
JI is a recipient of a National Health and Medical Research Council (NHMRC) Career Development Fellowship (APP1162929).

Disclosures
JI receives research grant support from MyoKardia, Inc.

References

