A Novel Genotype-Phenotype Risk Prediction Model for Arrhythmic Events in Women with Long-QT Syndrome

Ayhan Yoruk MD MPH, David Huang MD, Anita Chen MS, Scott McNitt MS, Valentina Kutyifa MD PhD, Arwa Younis MD, Bronislava Polonsky MS, Mehmet Aktas MD, Wojciech Zareba MD PhD, Ilan Goldenberg MD
Department of Cardiology, University of Rochester School of Medicine and Dentistry

Background

Women with LQTS types 1 and 2 exhibit a pronounced increase in risk for arrhythmic events after the onset of adolescence. We aimed to develop a novel prediction model of risk estimates for cardiac events (CE) and life-threatening events (LTE) in this population.

Methods

The model was derived from the Rochester LQTS Registry, with 767 confirmed LQT1 (n=404) and LQT2 (n=363) women with a single mutation. Cox regression was used to develop a risk-prediction model from age 15 to 60 years for 1) cardiac events (defined as syncope, aborted cardiac arrest [ACA], LQTS-related sudden cardiac death [SCD]); and 2) life-threatening events (defined as ACA, SCD, or appropriate ICD shocks).

Results

For the 767 patients the cumulative follow-up time was 22,243 patient-years, during which 323 patients (42%) experienced cardiac events. We identified three risk-groups based on genotype, mutation-location, and QTc thresholds for each group, adjusting for prior syncope and time-dependent beta-blocker therapy. The 10-year predicted risk of cardiac events ranged from 15% in the low-risk group, 29% in the intermediate risk group, to 51% in the high-risk group. Consistent results were shown for the endpoint of life-threatening events, with corresponding 10-year predicted event rates ranging from 2%, 5%, to 14%. C-statistics for the prediction model for the two respective endpoints were 0.68 (0.65-0.71) and 0.71 (0.66-0.76).

Conclusions

This is the first risk-prediction model that provides absolute risk estimates for cardiac events and life-threatening events for women with congenital long QT syndrome based on genotype-phenotype data. The projected risk estimates can be used to guide sex-specific management in congenital LQTS.

Disclosures: None

Email Contact: Ayhan_Yoruk@URMC.Rochester.edu